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Parallel Conducting Circular Cylinders 

R. V. Row 

Abstract 

The problem of scattering of an incident cylindrical (or 
plane) electromagnetic wave by an arbitrary array of perfectly 
conducting parallel circular cylinders is solved for the case 
of the electric vector parallel to the axes of the cylinders» 
The use of a Green's theorem and application of the appropriate 
boundary conditions results in a set of integral equations for 
the unknown surface currents on each cylinder..  These currents 
may be expanded in a complex Fourier series and the set of 
integral equations thus transformed into an infinite set of 
linear algebraic equations in the unknown Fourier coefficients. 
For a plane wave incident on a planar grating the connection 
with Wessel's work is shown. 

To simplify the computations the theory is specialized 
to the case of two identical cylinders« The solution of a 
finite number of the linear equations is considered by exact 
and approximate numerical methods.  In addition, neglect of 

[ the coupling between different current modes yields a simple 
formula for the scattered field In which the effect of coupling 
is quite apparent. 

For the two cylinders equidistant and far from the source 
the scattered field Is computed from these approximations for 
cylinders as large as a wavelength in diameter and spacings 
ranging from one to four wavelengths between centers. The 
validity of the various approximations is determined by com- 
parison with microwave measurements carried out at a wave- 
length of 3-185 cm in a parallel plate region. The theory 
indicates significant departures from the predictions of the 
independent scattering hypothesis and these have been confirmed 
experimentally. 
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Electromagnetic Scattering from Two 

fara Lxex Ooncucio.^ w^.ivuj.ai w^uw^u 

by 

R. V. Row 

Cruft Laboratory, Harvard University 

Cambridge, Massachusetts 

1.  Introduction 

The problem of multiple scattering of freely propagating 

waves has interested numerous investigators for the past sixty 

years. Various theoretical analyses of particular problems 

have been based upon a solution of the scalar wave equation 

subject to appropriate boundary conditions<> The complexity 

of these problems calls for simplifying assumptions either in 

their initial fornnilation or in dealing with the final results. 

These assumptions are invariably based upon consideration of 

scatters which are either 1) very snail compared to a wave- 

length, and may be closely spaced, or 2) spaced so that their 

separation is much larger than their dimensions and a wave- 

length, so that each scatter scatters independently. Actually 

no results have been obtained previously for the case where the 

dimensions of and spacings between scatters ara comparable to 

a wavelength.  It is for this latter case that coupling between 

scattering elements should be large, and interesting departures 

from the results of the independent scattering hypothesis are 

expected. 

This report considers a combined theoretical and experimental 

study of the scalar problem of scattering of an incident cylin- 

drical electromagnetic wave by two infinitely long parallel, 

identical, and perfectly conducting cylinders (for spacings and 
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diameters comparable to a wavelength) arranged with the incident 

electric field parallel to their axes. 

XHAO JOU<,IWI presents an historical introduction to the 

scalar multiple scattering problem. The two succeeding sections 

introduce the specific problem above in more general terms by 

considering the scattering by an arbitrary array of any number 

of such perfectly conducting cylinders of arbitrary diameters. 

By specialization to the case of scattering of a plane incident 

wave by a planar grating of indentical cylinders the connection 

with another grating theory is shown. 

The complexity of the theory for the infinite grating and 

line source, which would be necessary to take account of experi- 

mental conditions, is so great as to preclude any calculations 

being based on this theory, except for the case of very large 

spacing between cylinders. For this reason the theory is further 

specialized in Section 4 to the case of a line source and two 

identical cylinders. Some of the consequences of this theory 

are considered and methods of obtaining numerical results to 

check with field measurements are discussed. 

Although the problem of diffraction by a grating of wires has 

received considerable attention in the literature dating back to 
1 2 "^ the turn of the century.  ' ,J there remain certain aspects which 

have not been satisfactorily investigated, namely, the effects of 

the size of the cylinders on mutual effects and the use of a line 

source of excitation in place of the usual plane wave. Considera- 

tion of coupling effects between scatters is of fundamental physi- 

cal interest, whereas the use of a line source of excitation is 

an attempt to bring the theoretical assumptions into closer ap- 

proximation with feasible experimental arrangements. At best, as 

was seen in Technical Report No. 153, °ne may obtain experimentally 

various approximations to the elusive and unnatural plane wave. 

However, if the object of diffraction measurement is to correlate 

the experimental data with a theoretical model assuming plane- 

wave excitation, then one is restricted to the study of relatively 
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small centers of scattering, and for simplicity it is best to 

use a line source.* 

A recent set of measurements by Groves on the transmission 

properties of parallel wire grids using a point source indicated 

considerable disagreement with the theoretical results of Wessel' 

based en plane-wave incidence. This disagreement is attributed 

by Groves to the use of a point source and clearly indicates that 

the existing theory does not give accurate correlation with experi- 

ment » 

A perusal of the literature on scattering from several obstacles 

reveals that theoretical work on problems of this type has been 

limited chiefly to cases where the field quantities involved are 

essentially scalar in nature. Such an approach to the problems 

of multiple scattering while not valid for the most general cases 

of electromagnetic scattering nevertheless sheds a good deal of 

light on the essentially unique properties of these problems which 

may be attributed to mutual coupling. 

Of all possible configurations of multiple scatters that of 

the infinite diffraction grating made up of a planar array of 

parallel identical circular cylinders or strips has received the 

greatest attention. The reasons for this concentration of effort 

are fairly obvious and are briefly stated here* Firstly,' the 

vector wave equation for the electromagnetic field may be separated 

into two independent scalar wave equations which may then be solved 

separately. Secondly," with plane-wave excitation the total field 

exhibits a periodic nature so that the resulting theoretical 

expression for the field may be conveniently expressed in simple form 

enabling the effects of mutual coupling and size of scatterer to 

* —•  
The problem of diffraction of a spherical wave by a cylinder 
has been solved by P. Oberhettinger (see Annalen der Phvslk (5) 
43 ? 136-160 (1943)) and the corresponding problem with a con- 
ducting wedge replacing the cylinder by H. Carslaw (loc. cit.) 
Proc. London Math. Soc. 17? IP," 121 (1899). However, in both 
cases the expressions for the resulting field reduce to relatively 
simple form only in the far zone. 
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be more readily understood than with a finite grating or any other 
type of excitation. i 

Recent papers by Twersky, Shmoys' and Groves give a 
fairly complete set of references to the literature on this and 
related problems. These sources have been useful to the writer in 
evaluating the advantages and drawbacks of the various theories 
on the grating of parallel wires and in deciding how to formulate 
a theory which takes into account both coupling and a line source 
of primary excitation.  It is therefore timely to give at this 
Juncture a critical evaluation of the work done on this problem 
to date. 

The simplest assumption that can be made in any multiple 
scattering problem is that all the obstacles scatter independently 

D 
This idea goes back at least as far as Rayleigh, who first em- 
ployed it in his theory of the scattering of light by small particles 
in the sky,* although a possible earlier source of this idea is 
to be found in Thomas Young's7 theory of optical diffraction. The 
usual theory for the optical diffraction grating is based on this 
simplification and the results of such an analysis predict accurately 
the angular position of the various spectral orders. However, 
Wood  observed the phenomenon of almost discontinuous changes in 
the intensity of some lower-order spectra as a speculuia metal 
grating was rotated so as to change the angle of incidence. To 
explain this effect Rayleigh- found it necessary to take account 
of mutual interaction effects between elements of the grating. 
His recognition of this fact started a tide of investigation in 
the diffraction grating which is still active. Apart from J. J. 

*In measuring the diffraction from two parallel identical conducting 
cylinders, R. D. Kodis (see Cruft Lab. Progress Report Nos. 18 and 
19, Harvard University (195D) found that even for cylinders a 
wavelength in diameter the independent scattering hypothesis gives 
reasonable predictions of the trend of near zone field measurements 
for cylinders spaced aj closely as 6 wavelengths between centers. 
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Thompson's attempt* to solve the problem of reflection and" 

transmission of an electromagnetic wave by a grating of closely 

spaced wires Lamb" gave the rirst clear theoretical solution valid 

for small wires and close spacing by referring to the analogous 

static potential problem. His results received experimental con- 

firmation at the hands of Shaefer and Laugwitz  who employed 

decimeter electromagnetic waves from a Hertzian(spark) oscillator, 
1? Ignatowsky  was the first to develop a general theory of 

scattering from an infinite grating of identical elements using a 

formal solution of Maxwell's field equations satisfying the appro- 

priate boundary conditions. He expressed the total field as a 

superposition of the incident field and an integral over the 

surface of each element in the grating (without specifying any 

particular shape of grating element). Because of the periodic na- 

ture of the boundary conditions he expands the total field in a series 

of plane waves analogous to the propagating and evanescent modes in a 

waveguide.  (The waveguide point of view in treating diffraction 

gratings has been developed quite recently in a number of papers 

by Marcuvitz, ^ Miles,  and Shmoys/)* The formal process of 

satisfying the boundary conditions leads to a set of equations for 

the mode coefficients which may be expressed in a neat form involving 

a number of single integrals over the surface of a grating element. 

Due, however, to the cumbersome notation used, and Ignatowsky's 

failure to apply the results of his analysis to any specific grating 

*Tt is interesting to note that Thompson expands the field in a 
Fourier series of the same period as the grating spacing, an idea 
developed apparently independently by Ignatowsky twenty years 
later. However, Thompson's use of the electromagnetic boundary 
conditions in determining the Fourier coefficients is not clear 
and his results were discarded in favor of Lamb's by the experi- 
menters Shaefer and Laugwitz. 

**Shmoysf recently published paper (see ref. 27) gives a variational 
method for calculating the mode coefficients in an analysis 
essentially the same as Ignatowsky:s. 
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problems, his very general results have been ignored by later 

workers in favor of a simpler approach to their particular problems. 

Shaefer and Reiche ' seem to be the first to have expanded 

the scattered field from an array (of circular cylinders) in a 

series of Hankel functions, although the idea of expanding the 

field scattered from a single cylinder in such a series had been 

used earlier by Seitz. 

They neglect mutual coupling (i.e., they assume grating spacing 

much greater than a wavelength) and solve for tne coefficients in 

the series by applying the electromagnetic boundary conditions. 

Their chief interest in the analysis is to determine the effect 

of the material of the grating elements on the diffraction effects. 

To first order,at least, they show that the location of the far- 

zone minima is independent of the grating material. Their analysis 

of the diffraction grating is more realistic than previous analyses 

in that they consider the effect of a finite number of elements in 

the grating and find, as might be expected, that the scattered field 

is subject to significant amplitude changes from that expected for 

the case of the infinite grating. Their paper contains no numerical 

computations to show these effects graphically or otherwise. 

Concurrently with Ignatowsky, Zaviska '  developed an analysis 

of diffraction from an arbitrary array of parallel cylinders by 

expanding the scattered field in a series of Hankel functions 

representing cylindrical waves radiating from each cylinder. By 

using various expansion theorems for Bessel functions he matched 

the fields to the boundary conditions at the surface of each cylinder. 

This procedure resulted in an infinite number of linear algebraic 

equations in an infinite number of unknowns which in principle could 

be solved for the coefficient of each cylincrical wave in the ori- 

ginal expansion of the scattered field. He suggests a method of 

iteration for solving these equations and gives an approximate 

method for determining the effect of the wire radius on the field| 

in essence this is a criterion for specifying what is meant when 

one speaks of "small" wires. Zaviska applied this interesting theory 

« 
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to an array of two very thin wires to explain the experimental 

results of scattering measurements from a thin dielectric cylin- 
lfi 

der made by Shaefer and Grossmann.  However, he did not apply 

his method to the study of scattering By wires of cross-sectional 

dimensiors and spacing comparable to wavelength where one may* 

expect interesting- departures from the simple independent- 

scattering hypothesis,, 

Recently Wessel' developed an analysis of scattering from an 

array of parallel filamentary conductors based on deriving the 

scattered field from a vector potential derivable from the currents 
in the wires of the grating. He gives simple expressions for the 

transmission coefficient of the grating based on plane-wave incidence, 

his results being valid for small wires and closely spaced grating 

elements<. Wessel's theory has received excellent experimental con- 

firmation at the hands of Esau, Ahrens and Kebbel. 
20 

Franz  has rederived Wessel's results by solving the wave 

equation directly in plane polar coordinates without the inter- 

mediate step of the vector potential. He also considered the problem 

of two parallel gratings, and showed an interesting resonance in 

the transmission coefficient as the spacing between the gratings 

is changed., As with Wessel, his results are limited to the in- 

finite grating of small wires and plane-wave incidence* 

Within the last few years Miles  and Shmoys^ have considered 

the grating problem using a variational method»  In essence they 

Fourier-analyze the total field to reduce the complexity of the 

mathematical problem to a stage which requires only the solution 

of a single integral equation, resulting from the requirements 

imposed by the electromagnetic boundary conditions„ This procedure 

leaves a series of plane-wave mode-coefficient? as the unknowns 

to be determined, and at this point in the analysis they introduce 

the well-known variational method of Levine and Schwinger to ex- 

press the quantities of physical interest in a form which permits 

a simpler computational problem than that resulting in Tgnatowsky's 

paperc However, the authors do not consider how they will determine 
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the necessary current distributions on their scattering elements 

for use as trial functions in the variational formulas. Miles 

paper gives results which yield the transmission coefficient of 

the grating as a unit for plane-wave incidence, while Shmoys1 

results, in principle at least, allow the scattered field to be 

computed everywhere, although as with Ignatowsky's earlier analysis, 

this requires the summing of a series of modesj the rate of con- 

vergence depending on the degree of coupling between grating elements. 

Marcuvitz is referred to in Shmoys1' and Grovejr papers as having 

considered grating problems from an integral equation point of view 

and also as having applied variational techniques to the computation 

of their far-zone transmission properties. Unfortunately, his work 

does not appear in any of the regular journals or in any readily 

accessible place in the literature. 

Twersky considers the problem of diffraction by arbitrary 

array of parallel cylinders and accounts for coupling by a system 

of "multiply scattered" waves.  In this novel analysis the first- 

order wave is that resulting from the scattering of the incident 

field by gach cylinder acting Independently, the second order takes 

into account the rescattering of these first-order waves by each 

scatterer, and so on to higher order scattered waves. This formu- 

lation is chiefly useful when the scatterers are relatively loosely 

coupled so that only the first few orders need be computed.  In 
21 a recent paper, Twersky  applies this method of analysis to the 

problem of the diffraction grating of small wires and explains the 

•anomalies" noticed by Wood.  For the case of the infinite array 

of small cylinders and plane-wave incidence the results may be put 

into the same form used by Ignato?;sky and Zaziska.* 

•Zaviska's work, although applicable to the problem of the finite 
grating has never been extended in this way. The form of the 
analysis to be presented in the next section is similar to Zaviska's 
though here the use of a Green's function formulation gives a clearer 
physical insight into the problem and leads naturally to a final 
form of the scattered field expression identical with Zaviska's. 

HM 
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Except for the work of Shaefer and Reiche * in 1911 no 

one has considered the problem of diffraction by a finite array 

of cylinders. As has been mentioned, their analysis neglected the 

coupling between grating elements so that for purposes of closely 

correlating theory and the possibilities of practical measurements 

there is need of an analysis which takes into account this coupling 

in a finite grating as well as the point (or line) nature of experi- 

mentally feasible sources of electromagnetic waves. It is the 

purpose of the succeeding section to develop such an analysis,which 

will relate closely to the physical situation of currents on the 

surface of the scattering elements. 

2. Outline of the Theory. 

In the following only scalar scattering by circular cylinders 

is considered since this results in a mathematically tractable 

problem although from Lamb's  work on the grating of closely spaced 

small wires or strips It is expected that for small scattering 

elements the precise form of their boundary is secondary in deter- 

mining their scattered field in directions away from the source 

of radiation. The theory assumes a current distribution on the 

surface of each perfectly conducting cylinder^ the total field is 

then calculated through the use of one of Green's theorems. Appli- 

cation of the boundary conditions gives a series of integral equa- 

tions for the current on each cylinder which takes into account 

arbitrary excitation and coupling between all the elements. The 

unknown surface current on each cylinder is then expanded in a 

complex Fourier series whose coefficients may be evaluated using 

the usual orthogonality property of the trigonometric functions. 

The resulting system of linear algebraic equations in the unknown 

coefficients may be written as an infinite matrix equation. The 

problem then remaining is to solve this system of linear algebraic 

equations. Various methods,of numerical solution may be used, 

depending on the number of terms and accuracy required In the final 

result. For small cylinders the terms off the principal diagonal 
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are small, and the meaning of the term "small" ma 7 be evaluated 

readily in estimating the importance of higher-mode currents 

contributing to the scattered field.  The results obtained at 
17 this point in the analysis are similar in form to those of Zaviska ' 

who started by assuming a spectrum of scattered cylindrical waves 

and determining the spectral amplitudes from a consideration of 

the boundary conditions. There is also a formal analogy to the 

results of Twersky's *   multiple-order scattering analysis. 

This theory is readily specialized to the case of a plane 

wave incident on an infinite planar grating of small wires. If 

the effects of higher-order current modes are neglected, this 

result becomes identical with that of Wessel* who considered a 

uniform current distribution on the surface of the wires in his 

analysis. 

"\o    General Theory 

Figure 1-1 shows the general arrangement of line source and 

scattering cylinders. The axes of the cylinders and line source 

are all parallel to the z-axis so that all relevant electromagnetic 

field quantities may be derived from the single scalar quantity 

Bz, the electric field intensity in the z-direction. Por con- 

venience in notation ,def ine 

Bz(x,y) * *(x,y)  . 

Then from Maxwell's equations it is well known that in a source 

free region the scalar t must satisfy the wave equation 

(V2x,y + K2)t(x,y) = 0  , 

subject to the boundary condition, that * vanish on all perfectly 

conducting surfaces parallel to the z-direction.  In Addition, of 

course, the usual restriction on the form of the solution at in- 

finity must be satisfied. The conventional harmonic time depend- 

ence e~   is used throughout with X = 2n/X. where X. is the free- 
space wavelength. 
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FIG.    I     GEOMETRY   FOR   SCATTERING   FROM   AN  ARBITRARY 
/JRRAY   OF CYLINDERS 
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If a Green's function (G(x,y$x',y') is defined as a solution 

of the inhoraogeneous wave equation 

(V x,y 
+ K2)/&(x,y|jr«,y') = -6(x-x')8(y-y«) 

and substituted into Green's scalar identity 

J(Y720  - GvSOd • - j     (*§£ - G §*)dC 

The result 

*(x,y) = I    (of*-* Jg)dC 
is readily found, where the line integral is taken over a closed 

contour containing the source and all the cylinders. By imposing 

the boundary condition ** o on the surfaces of all cylinders and 

making the convenient definition 

81 = _L- 

on nth cylinder 

sfen W - 

where Tn(/0 nay be considered as the surface current on the nth 

cylinder, the previous result can be reduced to 

= j.ine *(r) = *A"~(r) + $n in(^n)G(r,r')d^n, (1) 

for r' on the surface of the cylinders, vector notation being used 

here as a convenience, and * c(r) is the field that would exist at 

the point r if no scattering obstacles were present. 

The application of the boundary condition *(r) = 0 when r is 

on the surface of each cylinder leads to the following set of in- 

tegral equations;; 

-7   2TT 
inC/-^\ 

r on cylinde 

B-5? A/   in<*n>o(?,?'>d*n 
rs n    ^o r,r' on 

cylinders 
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there is one such equation for each cylinder,. Before proceeding 

to solve the unknown current distribution !„(/_) °n each cylinder, 

it is necessary to choose the appropriate Green's function.  It is 

well known* that the two-dimensional Green's function which rep- 

resents a radiating cylindrical wave in free space is 

G(r,r«) =|^1)(K|rw-r^|) 

where H* '(K|"r-r,| ) is the Hankel function of order 

(2) 

zero, 

The final fo in of the set of integral equations for the un- 

known surface-current distribution on each cylinder is thus 

*lnc(r) 

r on cylinder 

•^—7   2TT 

n  K> 
In<rfn)H*

1}(K|r-r •!)<!* n 
1 on 

cylinders 

(3) 

The problem now is to find a set of IQ(*n) which satisfy this 

integral equation. One method of solving such an integral equation 

is to expand the unknown function in a complete set of orthonormal 

functions appropriate to the geometry of the particular problem and 

then to determine the resulting unknown coefficients. Following 

this method a natural choice here is to expand the surface current 

on each cylinder in the complex Pourier series 

00 is*. 

S=-0D 

Thus the solution of the integral equation is reduced to the problem 
of determining the a ns By assuming the in'^n) to have a suffi- 
ciently regular behavior, and by using the orthogonal properties of 

•See for example Morse and Peshbach, "Methods of Theoretical 
T>*1 J M   /HTM J-_\ m   <-* ** ' Physics," (MIT notes) p. 155. 
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the set of functions e   , it is possible to reduce the problem 
of finding the a„„ to the solution of an infinite set of linear ns 
inhomogeneous simultaneous algebraic equations in which the a, 

-it* 

ns 
are the unknowns. 

m If the mth integral equation is multiplied by e   • (t is 
an/ integer including zero) and both sides are integrated with 
respect to ^m from 0 to 2n, it follows that 

£nc(r) •-"*•    d/rfn = 
r on mth cylinder 

7   2tr    2rr 

n  s  Jo    Jo r on mth   n m 

cylinder 

r» on mth and 
nth cylinder 

Assuming that the order of integration and summation may be inter- 
changed, and further introducing the notation 

2TT 2n 

Jo Jo _£ on mth cylinder 
r1 on mth and 
nth cylinder <*) 

and 
Yt»" 

2TT 

I •inc(r) 
-it/6, 

e 
r on mth cylinder 

m 
d* m 

the equation for a  can be written ns 

'tm •-ZE 
n   s 

tmnsana (5) 

where t ranges over the same integers as s, and n ranges over all 
the cylinders. 

4 

-• 1 m 

n^i&mi m    ••*•  \~-        t 
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Once the source excitation ifrnc(r) is specified the statement 
of the problem is complete and there remains the analytical problem 
of solving the linear equations (5) for the a . 

The incident field characteristic of a uniform line source is 

where A is an arbitrary complex constant. With this choice of 
excitation the integrals x+m  and ^tmns as evaluated in Appendix 
B are 

rtm 
n\      _*   -lt(9_+n) 

^AJ^KaJH^CKlrJ^ 

K tmns " T* Jt(KV< 
Hi^Ca.) » st r-r* on mth cylinder 

(6) 

r.r1 o» 
different 
cylinders 

For any given values cf the parameters K, a , 9ffl and I t>m-t>,J , Y-Ha 
and K+   may be evaluated using existing tables of the Bessel 
functions. Finally, the total field from the array may be calcu- 
lated readily using (1). Thus 

.scatt 
n   s     Jo 

where as in Fig. 1 

Pm =V^ + *2 - 2Rmacos(Vem) 

After substituting this last expression for pm in the formula 
above, the integration may be performed through use of the ad- 
dition theorem for Bessel functions* to give 

•See Appendix A, 
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*t0t(x,y) = tinc(x,7) + I YL  XI ans WH
S
1)(KV 

is0 n 

n (7) 

Here the reader familiar with Twersky's multiple scattering 
analysis #111 notice a formal analogy between equation ('/) and his 
formula for the scattered field. 

At this point it is convenient to show the connection of this 
theory to the work of Wessel  on the infinite planar grating of 
cylindrical wires. 

As the source is moved off to infinity. ©-—•©^ ' m   o 

^inc . AH^D(K|ir|) „ A v iK|bm| cos(90 - a0ffi) 

rtKr. 

and 

^""(r) - AH^CKlrl) ~ A^ 
r on mth 

in cylinder   iKr0+iK|bJ cos^-a^+iKa^osC©^)- f 

If A is chosen to make 

*lnc(^) = e 
r on mth cylinder 

«l^nlc°s(0-cbn)+lKaBcos(9o^n ) 

corresponding to a plane wave incident from the direction © then 

Ytm * 2"Jt(KVe 
iK|b Jcos(©n-« )-it(©rt - §) • m'    o om    o  2 (8) 

and for a planar array of equally spaced identical cylinders |b 
= mb (b is the distance between centers of adjacent cylinders), 

ja0 for m > 0 

*om =    ^Q + n f or m < 0 

m 

\M :. 

naffcis; •...wvw**'1"'" 
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From symmetry it is apparent that all the cylinders have the same 
current distribution except for the Dhase factor o

1Kmb cos^o"ao^ 
Thus 

iKmb cos(©^ «KX^) 

s."- *A (9) 
OS 

where a£g is the sth Fourier coefficient on the zeroth cylinder in 
the array. Thus, for this special case, equation (5) nay be written 
as follows: 

-it(G - 5)   ,,x 
4ie    o V  =H<^(Ka)a.t + 

-itaft  T^7   ^^7     iK(n-a)beos(e_-a ) igx      ,.v 
•      Zl  X "" e 9  °J3(Ka)H<»<K|n-«|b) 

n=-co  s=-co 
n^m (10) 

This equation is valid for all m.  In particular, as stated above 
in (9), it is only necessary to calculate the current on the zeroth 
cylinder in order to know it on every cylinder. Thus, the system 
of equations for m = 0 becomes 

4ie      2 * 41J(Ka)a't 

-itaft /        /      lKnbcos(©_-an) isa0      n \     , , 
+ «   °ZnAZT^A.« «  °Jg(Ka)H^(K|n|b) 

n^O 

As t ranges through all the integers from -ooto +co an 
infinite number of equations in the infinite set of unknowns a' 
is generated.  In principle, this set of equations could be solved 
for the a£g. However, it is not proposed to do so at present. 
For small Ka and b » a it may be seen from the behavior of the 
Bessel and Hankel functions involved that the dominant terms in 
the right-hand side of the previous expression are those with 
t = s = 0. Thus equation CIO) becomes 
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41 = 

oo 

41}(Ka) +   y^JpCKajH^^KInlbje 
iKnbcos(60-a0)] 

OO 

n=-oo 
ry*0 

This is identical with the equation for the current on the zeroth on 
cylinder obtained by Wessel. Table? of the series 

>  T (nKb) corresponding to normal incidence 
—   ° 12 5 

have been computed by Ignatowsky fc and Wessel. ' 

7JQ(nKb) and 

n= 

As far as coupling effects and their dependence on cylinder 

radius and spacing are concerned, the mode coefficients could be 

computed with a large amount of labor for the case of an infinite 

planar grating using equation (10). However, when it comes to 

comparing the theoretical results for the scattered field to experi- 

mental results, it is not feasible to use plane-wave excitation, 

and the system of equations for the mode coefficients for a line 

source of excitation and the infinite grating are exceedingly 

complex. Hence, it is expedient to consider the simplest con- 

figuration for which mutual coupling effects may be calculated 

with a rpasonable amount of labor. For these reasons the problem 

of scattering of a cylindrical wave by two identical cylinders has 

been chosen as an example to test the general theory. 

4. Theory Specialized to the Case of 

Two Identical Cvllpder? 

Arbitrary Incidence (Plane-wave excitation) 

In view of the complexity of the general theory developed 

in the preceding section it is expedient to apply the theory to 

a simple problem which illustrates the effects of both the size 

and the separation of the elements in determining mutual inter- 

action. The simplest configuration for such a study appears to 

be that of two identical cylinders arranged as in Figo 2. To 

*'**W *• ''~* *•*** ^^mgfM.'p .-*•**».- v „„ 
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simplify further the equations determining the current distribution 

coefficients a„„ the incident field is assumed to be a plane wave. ns r » 
although for the case of normal incidence the equations will later 

be written down for a line source of primary excitation, since it 

is for this type of excitation that experimental measurements will 
be made. 

Using the notation in Section 4, and starting from the general 

forms,Eq. 6, for the coefficients Ytm and Kt   with the substi- 

tutions eQ = ©m
s0, a01 

= n/2 + e andaQ-1 = -(tm/2 - ©) as indicated 

in Pig. 2,the following expressions are obtained for plane-wave 

incidence? 

n 

^tm = 2nJt
(Ka)e 

• iKbsin© + it 

Ltmns * 

(11) 

(Ka) 8. st 

Jg.(Ka)H^^(210>) e 
-it(o + f) + is(e + 2) * 

The upper sign in the exponents is used for m = 1 and the lower 

sign for m = -1. When the above expressions for Y*-, and ^--g 

are substituted in equation (5), the linear equation for the 
unknowns a _ are for m • 1: 

XI9 

41)(Ka)a1<t + e       * ]jo(Ka)4
1)(2Kb)a_10 

(12) 

* >   e    ^ Jg(Ka) z 
!"1 

[9
l3Vt^(2Kb)a.lj5 • •-

ls8Ht"(2Kb)a.1>.3] i 

= 4ie 
-iKbsine + it 

and for m «= -Is 

H m        -it(® + ?) 
^"L;(Ka)a_1 t + e       

2 « J0(Ka)ir[
1)(2Kb)a1 Q + 
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elseH^(2Kb)aliS • e^H^C*.,).^., | 
J 

iKbsin© + it \ (13) 
= 4ie <L 

The system of equations (12) and (13) may be studied conveniently 

if they are written out it: detail for a number of values of the 

index t, and then gathered together in m§trix form. For con- 

venience, the matrix form is K . a ~ 4ie 1Kt)Slnex where the 

square matrix K is the matrix of coefficients of the unknowns a+I 

on the left-hand side of (12) and (13), a is the column matrix 

of the unknowns &.^   „, and X. is the column matrix of the elements 
itn/? +l,s9 

e '     on the righT-hand side of (12) and (13). This procedure 

has been followed in setting up the matrix equation shown in Fig. 2 

where the indices t and s run ffom -2 to +2. 

In writing a finite matrix equation in place of the infinite 

matrix equation required by the rigorous theory the effect of 

neglecting all equations with|t|and |s| ranging from a given 

integer to infinity (in this case the equations with t and s 

ranging from + 3 to + oo have been neglected) mast be determined. 

In general it is difficult to justify rigorously the neglect of 

•higher-order' equations. However, in this particular problem 

the known behavior of the cylinder functions which comprise the 

coefficients permits a heuristic justification of the neglect 

of such 'higher-order' equations. This justification is treated 

in detail later and for the present the validity of the solutions 

obtained from the finite matrix equation will be assumed. 

For a spacing that is much larger than the cylinder radius. 

•w. m  --%*%*»..( 
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it is apparent from the behavior of ths coefficients* in the 

matrix equation as written in Pig. 3 thp.t the predominant ele- 

ments in the K matrix lie along the two principal diagonals, that 

is,the diagonals running from the upper-left-hand to the lower- 

right-hand corners, and from the upper-right-hand to the lower- 

left-hand corners. The degree of approximation involved in the 

use of these terms alone in solving the finite system of equations 

will be discussed later. For present purposes useful information 

about the behavior of the far-zone field may be derived from the 

matrix equation by assuming this approximation to be good. In 

essence this assumption means that the current distribution In 

each mode (characterized by the indices +s) is independent of the 

current distribution in other modes. 

For example, from the matrix equation in Fig. 3 the zeroth- 

mode coef"icients a+1 Q will be determined from the pair of equations 

For small Ka 

Jn(Ka) * (^)
n 1 nl 

41}(Ka) * - ita=llL <£)» for n f 

and for large Kb 

n  yKa for n = 0 

*"«» * vs.1(Kb"¥" * 
for Kb » n 

These expressions are useful in studying the behavior of the K 

matrix elements for small Ka and large Kb. A detailed discussion 

of the behavior of the elements as depends on order n, and the 

magnitudes of Ka and Kb will be found later. 

•MBKId 
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41)(Ka)a1 Q + JQ(Ka)H^1)(2^^ Q = 41e-
iKbsln* 

J0(Ka)H^
1)(2Kb)a1 0 + H^

1)(Ka)a1 0 = 4ie 

The solutions to these are, 

iKbsinQ 

a 

I- 
1,0 

-1,0 

•» 41 

H<1} (Ka) - j2(Ka)41}  (2Kb) 

LH(
1>(Ka)e1Kbsine- J0(Ka)H<

1)(2Kb)e-1Kbslne- 

Similar expressions are obtained for the other-mode coefficients 

+1 +s» an<* ^ Several they may be written in the following fonnj a 

ll,±s 

-l,±s 

2i e 
41eTs 

H<1} (Ka) - j2(Ka)H^} (2Kb) 
« 

1 

H^1)(Ka)e-1Kt)sln9-J3(Ka)4^(2Kb)e iKbsine-2iS9 

H^1)(Ka)e1Kbslne-Jg(Ka)4
1)(2Kb)e-1Kbslne-2iae 

(14) 

Equation (7) (repeated here for convenience) 

*t0t<*,y) = *lnc(x,y) + ! X S *n3V
Ka«s1,<KVelS'>n 

n  e 
(15) 
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can be used to calculate the total field. However, the terms 

Hg ' (KR^e    In the summation for the scattered field are 
complicated functions of the position of the point of observa- 
tion, so for simplicity the point of observation will be taken 
in the far zone, along the line of the incident wave direction. 
This means that /6+^ ~ 0, and R+, ~ RQ + bsinfc, so tne well known 
asymptotic form o7 the Hankel 7unctions for argument KR much 
greater than the order s gives, 

H (1) s «»> -£^r1 Vf * ± +iKbsinO 

With these simplifications the part of equation (15) representing 
the scattered field becomes 

.scatt ~ -*- *      - 4TT e 
irR0-in/4 VFX +iKbsin0 (a J (Ka) v no ox ' 

n=tl 

^ 

* 2.x     e"l9n/2jS
(Ka)(an,s * «„-,) 

S"l 

Prom (14) the terms (a_ +a_ _) may be combined (for n = + 1) as,' 

aU ,•**•!,-•  T~^ 2  
H<1} (Ka)- J^(Ka)41) (2Kb) 

(H(1>(Ka)e7lKbslnG 

^ Js(Ka)H^
)(2Kb)cos2s© ei1Kbsind ) 

Substitution of this last expression in equation (15) results 
in the following expression for zhe  scattered field,, 
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1KR -in/4 .  oo 
,scatt,p s ~ V2"e  °    -/JK V7 ,     Js(Ka) 

*   (V " "     n VBT 2_A S "7772 
0 s^o    Hi1-1 (ka)-J jf(Ka)H^^(2Kb) 

(Hs
(1)(Ka) -Js(Ka)H^

)(2rb)cos2s©cos(2Kbsine))    (1.6) 

From this result it is apparent that as the spacing between 

the cylinders becomes very large the scattered field shows negli- 

gible dependence on the angle of orientation of the plane of the 

cylinders in the incident wave-front. However, for moderately 

close coupling it is interesting to see the effect of orienta- 

tion on the scattered field. 

A comparison between the results of the above analysis and 

near-zone field measurements described in Section 5 for normal 

incidence with 2b/X. = 1 shows that the theory which neglects 

the off-diagonal terms in the matrix equation gives reasonable 

results for Ka as large as 1.5« Therefore equation (16) has 

been used to calculate the far-zone form of the total field 

from the relation ^ot - **nc + ij^catt as a function of the 

angle G. For convenience the factor * yjp bas been chosen equal 

to 1/2, although for actual observation i8 the far zone,!^/*. 

must be large and the above factor quite small. In Fig. 4 the 

amplitude of + 0w is (plotted as |Eznorm|) shown as a function 

of e for two cylinder radii corresponding to Ka - 0.10 and 

Ka = 1.50 with the spacing 2bA = 1-0. In addition, the same 

quantity is plotted for the case where coupling is neglected. 

From these results it is apparent that coupling effects 

(as evidenced by the difference between the curves with and 

without coupling) are considerably less dependent on the angle 

of orientation for the smaller than for the larger cylinder. 

In the case of the larger cylinder the coupling effects are 

slightly larger fcr normal incidence (i.e. , © • 0) than for 

any other angle. This is not true for the small cylinder, but 

at least it is safe to assume that coupling effects are about 

« 
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as large at normal incidence as for any other angle of orienta- 

tion for cylinders with Ka less than 1.5. The analyses presented 

above is only strictly true for spacing much larger th-w the 

radius. How much larger is a rather difficult question to answer, 

since it requires in effect the solution of the complete matrix 

equation, or an appeal to experiment. For the case discussed 

above b/a equaled approximately 2,1* but it is dangerous to us© 

this ratio as a criterion for the range of validity of the approxi- 

mation, since the off-diagonal elements in the K matrix are not 

related to the diagonal elements through any such simple algebraic 

function as tya. Therefore the question of the useful range of 

approximation will be investigated experimentally in Section 5. 

Stiff ice it to say here that provided b is kept large enough the 

predictions of this theory should be In reasonable agreement 

with the actual situation for cylinders with Ka even greater than 

1.5» It seems reasonable to assume that for cylinders with Ka 

even larger than 1.5 the effects of coupling should be about as 

large for normal incidence as for any other angles of orientation 

showing significant departures from the results based on the 

assumption of independent scattering. For this reason, and the 

additional fact that it would be exceedingly laborious to solve 

the matrix equation by numerical method for arbitrary orienta- 

tion and cylinders with tighter coupling than assumed in the 

above example, the remainder of this chapter and succeeding chapters 

will consider only the case of normal incidence corresponding 

to 6 equal to zero. 

Normal Incidence 

For normal incidence the effect of substituting a line 

source(or cylindrical wave) in place of the plane-wave excita- 

tion assumed previously presents no special difficulties be- 

cause, as is apparent from the geometrical arrangement of the 

source and cylinders shown in Fig. 5, both cylinders are ex- 

cited symmetrically. The system of equations (13) for the 

unknowns a+^  for m = -1 may be written 
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H^1^(Ka)a.1 t • e 

-25- 

-itw/2«J0(Ka)^(2Kb)ai?o 

eisn/2j (Ka) 
5 H^JJcacb).! 

J (17) 

where the term 41H£X'(K 7rJ+b )e appearing on the right- 

hand-side differs from that In (12) because of the use of the Y*-. 
(see Eq. (6)) proper for line source excitation, rather than that 
for a plane wave. 

If the_angle 0 Is set equal to zero in the matrix equation 
K * a « 4ie*iKbsln0X. of Pig. 3 it is apparent that the equations 
fur m _ 1 and m = -1 are identical except that a n  must be re- 

—X , S 
placed by a^ _9 wherever it appears.  This of course reduces by half 
the number of unknown coefficients to be determined, and is to be 
expected from the symmetry of the source and cylinders. 

It is evident 

\Uj)  - !_!(-*!> 

where l^(^i) and ^-i^~^i^ are *^e surface currents at mirror 
image points on the upper and lower cylinders, 
representation 

-f 

If the Fourier 

w • 
is* 

ns 
n 

is substituted Into the above symmetry relationship the following 
identity is readily established, 

'i,» '-1,-5 

for all s, 

The system of equations relating the unknowns obtained from 
(7) by using this statement of symmetry and allowing t to rang6 
through all positive and negative integers may be conveniently 
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summarized in matrix form as, 

••26- 

K . a - 41X 

where K is a square matrix, whose elements are the coefficients 

of the a^+g and 4-iX is the matrix of elements on the right-hand- 

side of tT?). This matrix equation has been written out explicitly 

in Pig. 6 for the index t ranging from -3 to +3„ 

The rigorous solution of the problem requires the solution 

of an infinite matrix equation. Except for certain special cases 

(in this problem, corresponding to no coupling, i.e. Kb-*co) 

the solution to such an Infinite matrix equation is not immediately 

obvious, and Indeed a simple solution may not exist at all. 

An Approximation 

The best that can be done by way of a solution is to solve 

by numerical means a finite number of the equations represented 

by (17). This procedure may be justified qualitatively in the 

following way. Firstly the elements on the principal diagonal 

in the I matrix of Pig. 6 are B*t
(1^(ka) + J1(Km)H^^(2Kb). (Por 

t a negative integer multiply this expression by e—.) Por 

large order (t being taken positive) t and the arguments Ka and 

2Kb less than the order, use of the representations,* 

J^(t sech a) 
* + 

+t(tanha-g) 

V: 2rrt tanha T^(t sech a) 

with the definition sech a= Ka/t or Kb/t gives 

H^X)(Ka) + Jt(Ka)H2^
1)(2Kb) 

•tCsech"1^ -Vl-(^)2) 

vWa-(^J 

See General Bibliography, Watson*s "Bessel Functions," p. 243, 
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tCsech"1 ^ -1^1(^)2) 
- ie 

+ 5 
-tCseoh"1^) -Vl-(^)2) ^tcsech*1 ^ -VnfF 

2t(sech-1 f* -Vl-(^)2)J > 

For s  » Kb, Ka; and Ka, Kb » 1,  several approximations may 
be made and this formula simplified to 

y£{*»ttyl5*,t<t,t; (18) 

Thus the diagonal terms tend to become very large with 

increasing order.  If the off"diagonal elements tend to become 

very small with increasing order then the procedure of solving 

only a finite number of the equations appears as reasonable. 

This is indeed true as is readily seen from the fact that the 

off-diagonal elements are of the form 

Js(Ka)Ht.s(2Kb)  (for s f t) 

and that for large s (also s » Ka, 2Kb, and Ka, Kb»l) this 

combination behaves as 

Thus for s much larger thin t this combination behaves essentially 

as 

which tends to zero with increasing s. This argument indicates 

that the approximation involved in choosing for solution only a 

finite number of the equations and unknowns represented in the 

infinite matrix equation is a very reasonable one= 

ggjftwMifr:-*-*** 

MM 
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Granted that the approximation is good, how many, and 

which equations should be chosen for solution? Since the 

problem of scattering by two cylinders must reduce to that of 

scattering by a single cylinder in the limit of very large 

spacing between cylinders, the first question is most readily 

answered by using the simple well-known solution to the problem 

of the scattering of a plane wave by an isolated cylindero The 

symmetry of the diagonal elements of the K matrix about the 

element corresponding to t * s • 0 points to an obvious choice 

of equations as those with t * 0, +1, +2 . . » 8 +n9 and un- 

knowns with s ranging from -n to +n8 The scattered field (for 

the same orientation of the Incident plane vave as in the two- 
22 

cylinder problem from an isolated cylinder  may be put in the 

form 

*scatt(r,/6) = - e is+1sin 6.(Ka)e s        s 

•i5s(Ka)H(l)(Kr)cos ^ 

where 

H (1) (Ka) = -iC (Ka)e 
9 

i6.(Ka) s=0 

and 
[2, s f  0 

In the far zone the amplitude of H. ^(Kr) changes slowly with 

increasing s and thus the change of amplitude of each term 

corresponding to a change in index s is essentially propor- 

tional to {sin 8_(Ka)cos s/61  .  The term cos s/6 is one at 
22 

most and from the tables referred to above,  it is seen that 

sin 5g(Ka) tends to zero with increasing s, (for s greater than 

a certain integer).  Thus by reference to these tables it is 

possible to pick out the greatest integer s for which any 

significant contribution will be made to the summation for the 

scattered field. This maximum integer may then be used as a 

guide in deciding upon the number of equations to be solved 

in the tiro-cylinder problem. Thus for Ka 83,0 (2a/X.~ 1) 
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s    * 0 1 2 3 
pin 8g(Ka)|= 0.5680 0.7222 0.94-96 0.4977 

4 5 6 7 
0.1426 0.02251 0.002094 0.000175 

and s * 6 Is the largest index giving an appreciable term in the 

field summation. Hence in the two-cylinder problem at least 

6 modes must be solved for corresponding to t = 0, +1, +2, +3, 

. . . 0+6. There is an enormous amount of labor* involved in 

solving such a system of equations with complex coefficients*, 

however,for a spacing of one wavelength between centers such a 

system of equations has been solved exactly for the case 

Ka = 1.253, and approximately for Ka = 2.0 and 2,5, for t rang- 

ing between values determined by the above procedure., 

Methods of solving such systems of equations on a desk 

calculator are well known, and the relative merits of one 

exact method of solution and one method of approximate solu- 

tion are discussed briefly in Appendix B. 8uffice it to say 

here that except for Ka < I.30 the labor required to solve 

such a system on a desk calculator limits somewhat the use- 

fulness of the theory. That the solution of a "block" out of 

the matrix equation yields results in excellent agreement with 

measurements may be readily appreciated by a glance at Pig. 9. 

Here equation(15)has been used to calculate the scattered field. 

A Further Approximation 

In view of the computational difficulties encountered in 

solving a large number of linear algebraic equations with complex 

coefficients it is desirable to have a simple approximation to 

the solutions for the unknowns a., Q, so that some of the major 
* 

characteristics of the scattering by two cylinders may be more 

readily seen. The simplest and only approximation that will be 

See Appendix B< 

I. 
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dlscussed is suggested by the fact that the diagonal elements 
in the K matrix increase without bound with increasing t, and 
at the same time the off=diagonal terms tend to zero. Hence it 
would seem reasonable to neglect completely all off-diagonal 
terms in calculating the a,  . A glance at Kigo 6 should make 

9 it apparent that in general it will be difficult to determine 
in advance the success of this assumption in predicting measur- 
able quantities from the relative amplitudes of the various 
elements (diagonal and off-diagonal) in the K matrix because any 
measurable quantities such as the surface-current distribution 
or scattered field are derived by complicated summations in- 
volving the unknowns a-.  * At this point, experiment will 

9 
prove to be a powerful companion tool to the theory and further 
discussion along these lines will be found in Section 9. 
Following then 5 is a presentation of the analytical results 
derivable from the use of only the diagonal elements in the 
K matrix. 

Prom equation CL# the diagonal elements in a K matrix of any 
order are obtained by using the symmetry relationship previously 
derived, namely 

a-l,t = al,-t  i 

and selecting only the coefficients cf these unknowns from the 
equation corresponding to each value of t (taking t = s for 
convenience of notation). Thus for a line source 

4i(-)sHX
c,1)(KVr^ +b2)e~ * X 

*i a = "TTT   m       (19) i's  H^i;(Ka) + J (Ka)H^ (2Kb) 

The value for the 'scattering coefficients' an  may be sub- 
9 

stituted xnto equation (7) to give the following approximate 
expression for the scattered field. 
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tscatt(R^} . 

fei  s^ot  "        H^(Ka) + Jg(Ka)H^(2Kb) 
(20) 

In the limit,as Kb and Kr • 00, this expression (except for 

an unimportant constant) is identical with Seitz's  expression 

for the field scattered by an isolated cylinder (provided the 

summation over the cylinders is extended to one cylinder only)* 

Also as Kb—*coeach term in the series becomes that predicted 

by the independent scattering hypothesis. Por small cylinders 

(i.e., small Ka) the Bessel and Hankel functions involving Ka 

may be approximated by their power series representations to 

give the following result for the scattered field, (in the case 

that b » a). 

•3catt(R,0)~ 

S°-00 

s = 0 

s f  0 

Prom this result it is easily seen that for sirall cylinders the 

major contribution to the scattered field comes from the mode 

with s 

ffg^tK :tf! 

0. _ If KRn, KrQ» 1 the amplitude of the functions 

+b*) and H (1) (KR) is approximately constant for 

different s; hence the relative amplitudes of the zeroth and 

first mode in the scattered field arc 

'  where Y = 1.7811 

2 ^e'ri) 
and (^)2 

$3t^ ,-,i/iftL', -Qr- 
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The following table compares these quantities for K 

and 0.50 
0.25 

Ka Zeroth Order 
1 

1st Order 

<«F>2 
21°ee YS 

0.25 
0.50 

0.230 
O.238 

0.0156 
0.0625 

Thus for Ka < 0.25 only the zeroth mode need be considered,' 

and for Ka in the range 0.25 to 0.50 contributions from the 

next mode begin to be appreciable. Thus (by neglecting 

coupling) we have a simple criterion for defining the small 

cylinder.  In Fig. 9 the result of calculating the field at 

a fixed point from the zeroth mode, or uniform surface- 

current distribution (coupling taken into account) is plotted 

as a function of the radius a, for a fixed spacing of one 

wavelength between centers. 

The diminishing effects of coupling on the coefficients 

Jg(Ka)a^  in (20) occurring in the summation of equation 

(19) as s is increased may be seen in the following way. 

Assuming that the source and point of observation are both a 

large distance from the cylinders, the contribution of each 

mode in equation (20) is proportional to 

as(Ea,Kb) = -^ 
Ja(Ka) 

m, H^-'(Ka) + Jg(Ka)H^(2Kb) 
(21) 

As s increases, and for Ka, Kb >> 1 the approximations for the 

Bessel and Hankel functions leading to equation (8) give for (21) 
the following asymptotic form: 

*<*,» 
*\t 

2^2t «>* +v£f# 
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where the right-hand term in the denominator contains the 

coupling effect. Prom this last expression it is apparent, since 

b is always greater than or equal to a, that the two cylinders 

influence each other to a  decreasing extent as the mode index s 

increases.  This behavior is most strikingly demonstrated by the 

graphical plots of |o#' as a function of spacing for X = 2.0 

and 3»0 shown in Pigs0 7 and 8„ Here the complete expression 

for o_ given in (21) was used in the computations.  In addition, 
e i *L the corresponding quantity for an isolated cylinder^ is h 

plotted along with | ag| for comparison  It is seen that the 

coefficient a_ approaches the corresponding <x° for the isolated 

cylinder in an oscillating manner and for the higher modes (for 

example, s * 3,4,5 and Ka • 3<>0 in Fig0 8) the relative amplitude 

of these oscillations is smallo  In addition, these oscillations 

damp rather slowly with increasing separation between the cylinders 

indicating qualitatively at least that mutual effects tend to 

diminish rather slowly with increasing separation, although the 

complexity of the expression (20) relating the coefficients a_ 
9 

to the scattered field makes it difficult to predict solely on 

the basis of a graphical picture of the a_ how the total field 
3 

will depend on spacing and radius0 

To compare the predictions of the 'diagonal' approximation 

to measurable field quantities equation (20) has been used to 

calculate the scattered field. For large separation between 

source and cylinders the following representation* is used for 

the Hankel function H^ (Kj^r2 + b2) in equation (20) 

v 

H£
15
 (KU)- -V^fc • "*" "* " *' h1)(K»> + °<&P]  <22> 

where u • yr2 + b   ?nd 

si1J(Ku) = >   —LriU -_2 _ 
4=o (2iKu)m m.' T(s-m+ g) 

See General References, Watson*s "Bessel Functions," p„ 198» 
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Since KP0»S and K * ^p,* equation (20) for the scattered 
field reduces to 

± scatt a- <:, ej •in/* *£? +b' 
"  \^? 

/   /   e 2  os(Ka^b)S^
1^a,Kb)(KVr2+b2)Hii;rRn)e 

n   3 

The incident field at x e x, y = 0 Is 
4„«      «"iw/4 /—;~~  iK(r_+x) /,N 

)) 

«(D and for K(rQ+x)>->l,SQ ' ~ 1. The total field can now be cal- 
culated usixig the definition 

.tot ^inc + ^scatt 

Dividing this expression by the incident field at the reference 
point x = x, y * 0 gives for the normalized field 

t tot(x,y) • • - 1 -/ ^S= 
norm       z J .LzTjk 

uyf|^-lKCr0+x) 

yr^+bc 

/ ,  >   • 2 aa(Ka9Kb)S^
1)(K'/r2+b2)H^1)(KHn)e 

n+1  s=-co (23) 

This formula has been used in calculating the theoretical results 
labeled, diagonal terms only,* in Fig. 6 of this section and FigSo 
16, 19, through 21 of Section 5<>  In these results Kb has been 
fixed and Ka allowed to vary (from (KO783 to 3„0) and vice versa, 
(2b varying from 1 to 8 wavelengths)o 

Effect of Line-Source Excitation,. 

The use of a line source for the primary excitation shows 
up in two places in the general theoretical formulation ex- 
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emplifted in the matrix equation of Fig. 6» Firstly, a3 an 
(1 S       f~7—^? amplitude and phase factor in the term El  '(Kyr£ • b ) on  the 

right-hand side of the matrix equation,. The general behavior 
of this term may be studied through the representation of the 
Hankel function stated in (22)<> In addition the general re- 
currence formula* 

H(J-(z) = ** E(1\z)  - H Az) s+x     z  s       s-1 
may be used to give the relation 

Ssn(z)  m2z   * Ss1)(z)  4Ss~l(z) 

valid for Z>>1.     In particular S^U)  and S^^U) /» 1, 

(24) 

The use of these relations in (22) shows that for small t 

H^uVr^W 
i(K Vr? + \}d - TTS/2 -n/4) 

nK /r^b2 
e 

This expression contains the familiar cylindrical wave amplitude coression con 
]^CK Vr^+b5) 3, which reduces the amplitude of excitation on 

In addition there is a 
faCtOr J^wm ,J.^»    J*a "    o .  * 
each cylinder as the spacing Increases 

iK I—9 p phase retardation factor * vrf+b , Both of these factors are e  r o 
more or less independent of the order t. As t becomes large the 
factor 2g/[ VK ^rV] T appearing in the expression (24) for 
SiijCKVr^+b ) increases in importance. However the occurrence 
of this increasing factor causes little effect on the field 
because it is multiplied by a.(Ka,Kb) in the summation for the 
scattered field and thus the product a_(KatKb)S:

x'(K 'Vr^+b" tends 
to zero with increasing s.  In addition to the factors on the right 
of the matrix equation which are approximately independent of order 
there are two phase factors which depend linearly on the order. 
One comes from H^ (K Vrj^+b*), and the other is e-it0l. Using 
the asymptotic expansion for the Hankel function they may be 
combined into the one factor 

See General Bibliography, Watson's r,Bessel Functions," p. 74, 

• i i t • niiiii 



TR170 -36- 

e 
±it(§ - ©^ 

For OM small, that is, the separation between cylinders small 

compared to their distance from the source, the contribution 

of the factor 9 -        1 is negligible for small to  The factor 
e — ""' is the same phase factor that occur for plane wave ex- 

citation and hence is of little interest here0 The effect of 

all these excitation factors on the total field may best be 

summarized by reference to equation (23). For convenience take 

the point of observation to lie along the direction of incidence 

so that jL  c - ^_i, and of course Q^   = -$„•.<>  Thus (23) simpli- 

fies to 

B, = 1 "2"^f iKVr2+b2-iK(r +x) 
e 

00 

ese 

His   
2    a_(Ka,Kb)S^1)(KV^!+b2) 

s=o 

H^1)(KR1)cos  s(^1-ei). 

In the  far zone,^1^^) ~ 3~ •    -J1Z €,1X*1 _ ln»/2B<1>(KR1) 
and /J.  « 0. * 

Therefore 

E. 'v 1  -  !     ../ _-jin    w    e 
iK^+b2 - iK(r0+x)+iKR1ix 

•b' 

cylindrical 
wave 

qp 

2T esas(Ka9Kb)Ss1)(K^ro+b2)8s1)(KRl)cos sGl    (25) 
s~o 

The corresponding expression for plane-wave excitation is 

cbtajned by allowing b to approach infinity, thus 
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-iKx + iXR3 
e 

s=o 

plane 
wave 

Comparison of these two expressions shows that for the point 

of observation on the side of the cylinders away from the 

source the scattered wave in the line source case is modified 

by the amplitude factors 

V •
/vrF 

Vr!^' 
and  S^CKft^+b^cos s^ h 

For ©^ (i.e. r >> b) the only significant difference in 

amplitude for cylinders of moderate diameters is due to the 

factors/yS  x9, which for the cases computed and plotted graph- 

ically 
bZ' 

in this chapter and the next, results at most 

in about 3 par cent increase in amplitude of the (relative) scat- 

tered field above the corresponding amplitude for the plane-wave 

case. Expanding --T-c 
keeping only the first two terms gives 

tfyrf+b in a binomial series for r<<ir: and 

.iK :•£ •b' - iKr o       o . „ _   „.~„    1Kb /2r + . • . . e   o       o »v e     o 
2 

Hence for b <•<• r    there is only a slight retardation in the 

phase of the scattered field for the line source compared to 

the same field for plane-wave excitation. However, for b as 

large as 4 wavelengths and r0*37«7 wavelengths (corresponding 

to an actual experimental condition) the phase retardation is 

as large as 68.2 degrees and must be taken into account in 

the computation. 

In the experimental measurements designed to check the re- 

sults of the theory, the separation of source and cylinders has 

been kept constant at 37.7 wavelengths„ 



TR170 -38- 

5. Measurements of the Field Scattered by Two Identical 

Conducting Cylinders (Por Normal Incidence) 

The parallel-plate region and associated field-probing 

equipment described in Technical Report 153 have been used 

in a series of measurements of the field scattered by two 

identical highly conducting cylinders with a uniform line 

source for the primary excitation (at normal incidence) as 

sketched in Figo 5° 

These measurements are designed as a check on the validity 

of the approximations made in the theory developed in the pre- 

ceding section| and to compare the predictions of the indepen- 

dent scattering hypothesis with the fields actually measured. 

Changes In Equipment. 

Ifo changes have been made in the field-probing equipment 

as described in Technical Report No. 153. However, two minor 

changes were made in the arrangement of the source$ and a set 

of retractable positioning pins (which also serve as the smaller 

diameter scattering cylinders) and a moveable spacing bar were 

added to the probe-panel assembly,, 

In order to obtain a smoother amplitude distribution of 

the incident field along the line of probe travel the flanges 

on the waveguide horn-radiator were removed« This largely 

eliminated fluctuation in the incident field along the line of 

probe travel due to diffraction effects cuased by the finite 

aperture of the horn.  The previous difficulty with the use 

of an unflanged guide as a radiator was the fluctuation in the 

probe signal strength whenever the parallel plates were opened 

and closed again,. This fluctuation has been removed by coating 

the top and bottom surfaces of the guide with a very slow drying 

silver paint which tends to maintain uniformly good electrical 

contact between the waveguide and parallel plates whenever the 

m 
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plates are opened and closed again. The absorbing wedges at 

the edge of the plates near the waveguide have been kept at 

least 2 wavelengths from the open end of the guide, so that 

small changes in their position with opening and closing of the 

plates now causes negligible changes in the incident field meas- 

ured at the probe.  This radiating system has a measured phase 

center at approximately 39.7 wavelengths from the mid-point of 

the probe travel at the operating wavelength of 3»l85 cm.  In 

addition the 3-cm oscillator has been moved much closer to the 

open end of the radiating guide. This results in a shorter elec- 

trical transmission path from the oscillator to the phase refer- 

ence line and field probe, thereby improving considerably the 

reproiucibility of phase measurements. 

To permit quick and accurate positioning of the scattering 

cylinders in the parallel-plate region a retractable set of 1/8- 

inch diameter Bural pins has been added to the probe panel 

assembly. These pins are spaced along a line parallel to the 

probe travel line and two wavelengths (wavelength = 3»l85 cm.) 

from it on the side towards the source. They protrude into the 

parallel-plate region as shown in Fig. 10 and allow the scatter- 

ing cylinders and/or spacing bar with a corresponding 1/8-inch 

diameter hole to be fitted over them. The pins are spaced 1/2 

wavelength between centers with the first pin located on the 

line joining the phase center of the horn to the mid-position 

of the probe travel. Bach 1/8-inch diameter pin is drilled 

along its axis to take a 1/32-inch diameter coin silver wire, 

which may also be pushed up into the parallel-plate region. 

The 1/32-inch diameter wire and 1/8-inch diameter pin thus 

serve as scattering cylinders with Ka * O.O783 and O.313 re- 

spectively. The probe panel assembly complete with the posi- 

tioning pins is shown in Pig. 11. 

To permit cylinder spacings at other than 1/2 wavelength 

steps a series of spacing bars were constructed. They consist 

simply of a 10-inch long rectangular bar of Dural, 1/2 x 3/8 

•t£S9«MBnMMHHHA«iMaMBiMEk»S9Canai 
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inch in cross section, with a brass sleeve which fits over any 

of the 1/8-inch diameter positioning pins. At convenient posi- 

tions along its length 1/8-inch diameter holes may be drilled 

and fitted with easily removeable brass pins. The brass pins 

are used to locate the scattering cylinders on the spacing bar 

and the whole assembly is then inserted into the parallel plate 

region, the sleeve being inserted over one of the positioning pins. 

Figure 12  shows a sketch of a particular spacing bar used in 

this way. After the scattering cylinders have been located the 

spacing bar is removed and the positioning pin pushed down till 

its end is flush with the surface of the lower plate.. The upper 

plate may now be lowered into position on top of the cylinders• 

Scattering Cylinders and Experimental Technique 

Each cylinder used was made from brass turned to the 

correct diameter and 0.500 + 0.005 inches thicko A 1/8-inch 

diameter hole was drilled through the center to allow easy and 

accurate location of the cylinder on the system of positioning 

pins just described. To insure good electrical contact with the 

parallel plates, the top and bottom surfaces of the cylinder were 

lightly coated with the slow drying silver paint. 

The results to be presented showing the total electric 

field as a superposition of the field scattered independently 

by each cylinder are determined in accordance with the inde- 

pendent scattering hypothesis. Thus, if E~nc(r) is the incident 

electric field at a point r and E^ (r) is the total electric 

field with cylinder 1 in place, then Escatt(r) = E„tot(r)  -E*nc(r). z*       z 
Similarly if cylinder 1 is removed and cylinder -1 "* is put in 

Place E*catt(r) = E*otC?) - E*nc(r)   . 

According to the independent scattering hypothesis the total 

field with both cylinders in place is given by 

•i 
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EtotCr) = Elnc(r*) + E scatt + E  scatt 

= E*ot(r) * E*ot(7) - E*nc(^) 
Z-i Z -i z 1-1 .   I 

The results labeled "Independent scattering1 in the following 
graphs were calculated from the formula immediately above, 
following a measurement of the amplitude and phase of the in- 
cident and total fields as outlined in the preceding procedure« 

Measurements. 

Amplitude measurements are reproducible to closer than 2 
percent in all cases and in some cases where the signal is 
relatively large, the results may be reproduced to within 1 
per cent as in Figs. 15 and 16 and Pig. 18 through Pig., 22 where 
the probe position was kept fixed. Phase measurements are un- 
certain to within about + 2 degrees and reproducible to about 
the same degree. 

The measurements made may b* separated into two classes. 
Those where the cylinder spacing and radius are fixed and the 
probe moves along the line parallel to and 2 wavelengths from 
(on the side away from the source) the line joining the centers 
of the cylinders, and those where the probe is fixed and the 
cylinder spacing and radius are allowed to change. The first 
type of measurement gives a curve of the actual diffraction 
field in the near zone and serves as an overall comparison 

between theory and experiment.  Figures 13 - l6 show the rela- 
tive amplitude of the total field as a result of such measure- 
ments with cylinders one wavelength between centers, and radii 
corresponding to Ka = O.O783, O.3I3, 1.253 and 2,000. A spacing 
of one wavelength was chosen to permit sizable coupling between 
cylinders about a wavelength in diameter and still have the 
radius small enough to require the solution of the matrix equa- 
tion of Fig. 6 for only half a dozen mode coefficients. For the 
two smaller cylinders no graphical results are presented for the 
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independent scattering hypothesis. The reproducibllity of 

phase and amplitude measurements introduces relatively larger 

uncertainties in the calculation of the independent scattered 

field for small cylinders because the total field and incident 

field are more nearly equal than for the larger scatterers which 

cause greater differences between the incident and scattered 

fields. In general this first type of measurement requires a 

relatively large amount of labor for a relatively small amount 

of information gained about the effects of spacing and radius 

on coupling betveen the cylinders. In addition, a large amount 

of computing is necessarily to calculate such a curve from the 

theory, since each point on the graph requires summing a series 

of six or more complex terms. 

The second type of measurement affords a simpler experi- 

mental study of the importance of spacing and radius on coupling 

effects «nd in addition reduces the amount of computing necessary 

in the theory. For this type of measurement the probe was fixed 

at a point equidistant from the center of the two cylinders and 

two wavelengths from the line Joining them, on the side away 

from the source, and the spacing and radius were varied. Figures 

17 through 21 show the amplitude of the total field at this point 

as a function of spacing, for spacings from one to eight wave- 

lengths and radii corresponding to Ka = 0.313, 1.253, 1«509 2.0 

and 3.0. Figures 9 and 22 show the same quantity as a function 

of radius for Ka ranging from 0,0783 to 3.0 for spacings of 1.0 

and 3*024 wavelength. 

6. Conclusions 

Comparison of Measurements with Theory 

Numerical results have been computed from the formulae 

discussed in Sections 4,5, and 6, and are plotted along with 

the appropriate experimental results mentioned in Section 5 

A study of Fig. 9 and Figs» 15. through 22 shows that over 

\ 

\ 
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a fairly large range of radii and spacings the independent 

scattering hypothesis may be used to predict large-scale trends 

in the results, both for diffraction pattern measurements and 

for those results where the probe was fixed and spacing and 

radius allowed to vary,. Thus for the probe fixed and a constant 

spacing of 1.0 wavelength between centers (see Fig. 9) the 

trend in the measured field as the radius increases is closely 

predicted by the independent scattering hypothesis for ka ranging 

from zero to about 1.5- When the spacing is increased to 3*024 

wavelengths (see Figo 22) the independent scattering hypothesis 
i 

gives a fiarly good prediction of the trend for ka as large 2.5«» 

This simple assumption also predicts the over-all shape of the 
1 

results in the cases where the probe is fixed, the radius is 

constant and the spacing allowed to vary from 1.0 to 8<,0 wave- 

lengths (see Figs 17 through 21). 

In all the measurements referred to above there is practi-       j 

cally no detailed agreement between the measurements and the 

results of the simple independent scattering hypothesis, even 

for ka as small as O.O783 and a spacing of 3.024 wavelengths 

(see Fig. 22). The diffraction patterns in Fig. 15 and Fig. 16 

show this same lack of detailed agreement. For example, the 

diffraction pattern (see Fig. 15) in which the cylinders are 

spaced 1.0 wavelength between centers with ka equal to 1.253 

shows a maximum difference of approximately 50 percent between 

the measured and independent scattering results at the first 

minimum in pattern. Succeeding measured coupled and independent 

(scattering) minima and maxima are slightly shifted from one 

another and show amplitude differences of approximately 4 to 

8 per cent, For the same spacing and ka equal 2.0 (see Fig. 16) 

there is a pronounced shift in pattern and greater differences 

in the amplitude of corresponding maxima and minima than in 

the case with ka equal to 1.253 <• All the data taken show in 

general, as might be expected, that the larger the radius and 

smaller the spacing the poorer becomes the detailed agreement 



TR170 -44^ 

For cylinders and spacings very much less than a wavelength, the 
problem can be handled by the electrostatic approximation much 
as Lamb22 treated the problem of a planar grating of small wires. 

between the predictions of the simtjle independent scattering 

hypothesis and the corresponding measurementSo These measure- 

ments clearly indicate the need of a better theory to predict 

the detailed nature of the results, so attention will now be 

focussed on the specific results of the theory developed in 

Sections 4,5 and 6. 

For small cylinders, only the zeroth mode or uniform- 

current mode is significant xn  calculating the scattered fieldo 

The range of radii and spacings over which this mode alone is 

sufficient Is determined primarily by the radius,* since this 

parameter determines the number of modes required in the corre- 

sponding problem of diffraction by a single isolated cylinder. 

Thus with a fixed probe and constant spacing of 1.0 wavelength 

Fig. 9 shows that the uniform-current distribution gives excel- 

lent agreement with experiment for ka less than approximately 

0.3°  Incidentally It is interesting to note that the approximate 

shape of this entire experimental curve is reflected on a much 

exaggerated scale in the curve calculated from the use of only 

the zeroth mode. This mode is the one used by Wessex  in his 

analysis of the diffraction grating of small wires, and the 

validity of his theory for a large range of spacings (including 

smaller spacings than used here) has been established by the 

experiments of Esau, Ahrens and Kebbex. 7 The next step is to 

keep all the modes required for the same accuracy in the problem 

of diffraction by a single isolated cylinder. Due to the large 

amount of computing required, the effect of solving a finite 

number of equations for a fewer or greater number of modes has 

not been throughly investigated. However, in one case, that for 

ka equal to 1.253 with a spacing of 1.0 wavelength (see Fig. 15), 

a finite system was solved keeping at first three modes, and then 

four modes. Both esses load to results in about equally close 
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agreement with experiment.  In all cases where the number of 

modes solved for was the same as required by the single-cylinder 

problem the detailed agreement between the theory and experiment 

is excellent. 

The diffraction patterns (see Figs. 15 and 16) calculated 

(from the solutions to a finite number of linear equations) for 

a spacing of 1.0 wavelength and ka equal to 1.253 and 2«0 are 

in excellent agreement with the corresponding measured patterns. 

Likewise the points shown as triangles in Fig. 9 (showing the 

amplitude of the electric field at a fixed point as the radii 

of the cylinders are varied, with constant spacing) demonstrate 

the success of the theory developed in Section 4, where of course 

only a finite number of modes have been considered in solving 

the infinite matrix equation. 

Without the use of large scale automatic calculating machinery 

it would be impracticable to compute the solutions to the system 

of equations (17) for any appreciable range of radii and spacings. 

Therefore the diagonal approximation introduced in Section 4 

(pp. 29-34) has been used to compute the total field at a point 

equidistant from each cylinder and two wavelengths behind the 

line Joining their centers, using formula(21)for 2b/X. equal to 

1.0 and 3.024, and ka ranging from O.O783 to 3.0 (Figs. 9 and 22); 

and for ka equal to 1.5, 2.0 and 3.0 and 2b/\  ranging from 1.0 
to 4.0 (Figs. 19, 20 and 21).  The corresponding experimental 

curves show significant coupling effects for spacing considerably 

greater than 4.0 wavelengths. However, convenient tables of the 

Neumann functions YQ(z) and Y^(z) are not available for z greater 

than 25.0 (corresponding to a maximum probe cylinder separation 

equivalent to a spacing of 4.0 wavelengths), and the most inter- 

esting coupling effects for all the cylinders measured occur for 

spacings less than four wavelengths. 

From these results it is apparent that the diagonal approxi- 

mation yields a satisfactory approximation to the shape of the 

experimental curves, even for the largest cylinders studied 
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(ka equal to 3*0$  a diameter of one wavelength corresponds to 
ka equal to n). For cylinders with ka less than approximately 

lo5 the detailed point-by-point agreement between the theory 

and measurements is good and becomes better as the size of che 

cylinders decreases.  In the curves taken with the radius constant 

there is a progressive shift in the peaks and valleys of the 

theoretical curves towards smaller spacings as the radius is 

increased, and for ka equal to 3„0 the first dip in the experi- 

mental curve is absent in the theory. These effect." indicate 

the increasing need for considering interactions between modes 

of different order in the theoryj that is, the mode coefficients 

must be obtained as the solutions to a 'block1 from the matrix 

equation represented in Fig. 6„ 

The chief value of the 'diagonal' theory, then, is its useful- 

ness in predicting the detailed shape of the experimental curves 

and showing that significant coupling effects do exist, and from 

the measurements it appears to give fairly good predictions of 

the location and magnitude of these effects for cylinders as large 

as a wavelength in diameter and spacings as little as a wave- 

lengths The measurements also indicate that, with cylinders of 

diameter comparable to a wavelength, detailed point by point 

agreement between the diagonal theory and the measurements does 

not exist for spacings less than 4.0 wavelengths. What the 

spacing must be before a given degree of quantitative agreement 

is reached, has not been determined.  However, it appears that 

most of the interesting coupling effects occur within the range 

of spacings for which computations were made8 

General Conclusions. 

The problem of the diffraction of a cylindrical wave by , 

two identical conducting cylinders while not of great intrinsic 

physical interest in itself has served as a useful application 

of the very general theory developed in Section 3. useful 

particularly in that it has allowed a comparison between the 

results of various approximations in the theory and measure- 

•c 
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ments carried out on an actual physical arrangement of source 

and obstacles very closely approximating the conditions assumed 

in the theory. One approximation, the diagonal approximation, 

has proved very useful in predicting the shape of the experi- 

mentally measured curves for diameter and spaclngs comparable 

with a wavelength, where interesting and large coupling effects 

are found to exist. The diagonal approximation results in formulae 

not too difficult to compute which represents a great advantage, 

considering the labor required to solve a complete block from the 

matrix equation.. The electric field amplitude as measured in 

the experiments is not of general physical interest as would be 

the scattering cross section or field-pattern. However, these 

quantities can be readily calculated once the mode coefficients 

are known, and the near-zone measurements served their purpose 

In conjunction with the theory. 

The success of the diagonal approximation in the two-cylinder 

problem points encouragingly to the usefulness of the general 

method of analysis in handling the problem of the planar diffrac- 

tion-grating (mentioned briefly in Section 3 )  of wires with 
diameter and spacing comparable to a wavelength© The same method 

of analysis and a similar diagonal approximation might prove 

fruitful in handling the problem of diffraction of a plane wave 

by a periodic array of spheres. Of course, the general method 

of analysis could be profitably extended to similar configurations 

lacking simplifying symmetry by the use of modern automatic 

computing machinery to solve the resulting systems of linear 

equations. 

Due to the limitations of the experimental equipment, the 

theory has been formulated only for the case of the incident 

electric-vector parallel to the axes of the cylinders. However, 

the extension of the analysis to the other polarization should 

be straightforwardo 

imaaia 



TR170 -48- 

Appendix A 

EVALUATION OF THE INTEGRALS tm AND Ktmns 

With reference to Pig. 1 of Section 3 

•V* Tm * *n -  2W!(9i + " " V 
on mth cylinder 

and 

'm = Vr + b2 + 2r b  cos(e -a  ) *   o   m    o m    v o   our 

Using the addition theorem* for cylinder functions 

then  2TT 

•tm = AX/ Je(KaB)He(1)(Krm^ 
1«(9 +n)-i^ -it^. m m m M m 

where interchanging the order of summation and integration is 

assumed to be valid. The orthogonality relations for the 

trigonometric functions enable Y.  to be evaluated explicitly, 

hence 

\m = 2nAJt(Kam)H<£> (Kvjer 

It should be noted that for cylinders with centers above the 

line A-B in Pig. 1, ©m is to be taken as positive and for those 

with centers below A-B it is negative« 

The computation of K«.w.,„ must proceed in two steps. The 
wuu*S 

first case is that in which the indices m and n are equal, 

corresponding to r and r' lying on the surface of the same cylin- 
der . 

See Watson "Theory of Bessel Functions," 2nd edition, MacMillan 
and Co., 19489 ppe 36I. 
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With reference to Pig. A-l for the case n = my' 

t - ?' | - ^Vl - cos(^m-^) 

Using the above addition theorem for the cylinder functions gives 
us 

Ktmns=^{{e  °   ^UVH^^V6   " "^m        | 
j 

where 

S3t=< 

1 for s=t 

0 for s^t 

Turning now to the evaluation of K^^ when n^m. From Fig. B-l 
it may be seen that 

I"? - r*'l =VsL + <*l  - 2s,, an cos(n + a w - 6    + B ) 1     •  r nm   n    nm n        nm   n   nm 

Again applying the  same addition theorem 

*tmns^]>I[    J   *      n        m^^m^1)(Ksnm)e ' d^ 

carrying out the 0 integration we get 

<     ?T      -it*L, n s isCn+a    +?„_) *• -  i    / m  T t-v*   \xs UJ/r.     \tx nm Knm'  AA Ktmns " 4 / e     Js(Kan)Hs  (Ksnm)e d4n • 

Both s  and 3 _ are dependent on #_ so that in order to perf^^m nm    nm m 
the remaining integration the more general addition theorem* 

q=-co 

Watson, "Bessel Functions," IOJL. ell. 
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must be used whence it may readily be shown that 

Summarizing 

ni 

m -it(9+n) 
Ytm = 2TTAJt(Kam)Ht    (Krm)e 

^mns = 2" Jt(Kam)H 

Hs1}(Kam>  6st n = m 

Js<Kan)Irt-s(Kh,-bnl)e ' •""• 

Appendix B 

NUMERICAL SOLUTION OF THE MATRIX EQUATION K . a = 4i\ 

Two methods of numerical solution have been used to solve 

a finite block from the infinite matrix equation for the spacing 

2b/\ - 1.0, and Ka = 1.253, 2.0 and 2.5- 

The first method known as Crout's method* is especially 

well adapted to the solution of linear systems on a modern 

desk calculating machine and gives solutions to the same 

accuracy as the coefficients in the original system. The 

method will be described briefly so that an estimate can 

be made of the number of operations involved in the solution. 

The original matrix relation is written in the form 

See P„ D„ Crout, "A Short Method for Evaluating Determinants and 
Solving Systems of Linear Equations with real or Complex Coeffi- 
cients, "Transactions of the American Institute of Electrical 
Engineers T~o~60 1941. 
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x3 n 

a 11 a12 a13 lln *! 

a •^1 i22 l2n =    7' 

l3i 

a nl 

a32 a33 

a n2 

From this an auxiliary matrix B 

© 

'11 

'21 

J31 

J12 

(D 

H nl 

&. 

22 

J32 

l3« 

nn 

In 

SL 

© 

tbn2 

'33 

Vb nn 

"    ?•>. 

=   y, 

bl,n+l 

'2n D2,n+1 

'311 D3,n+1 

n,n+l 

is formed and finally the solution 

*1 = • • *n = bn,n+l 
is obtained.  The rules for determining the auxiliary and final 

11 

- -» ***i 
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matrlx are as follows 

Auxiliary Matrix. 

i) Elements In the first column equal corresponding 

elements in the original matrix. 

li) Elements in the first row equal corresponding 

elements in the first row of the original matrix divided by 

the diagonal element of the same row in the auxiliary matrix. 

iii) All elements below the principal diagonal are formed 

by subtracting from the corresponding element in the original 

matrix the sum of products of the elements previously calculated 

in the same row and column of the auxiliary matrix.  Thus 

b32 = a32 • b31b12 and b33 " a33 " (b31bl^ + b32b23)> 

iv) Elements to the right of the principal diagonal are 

formed as in iii) except that the result of this calculation 

is divided by the previously computed diagonal element in the 

same row of the auxiliary matrix. The numbered arrows indicate 

the order of operations in the forming of the auxiliary matrix. 

Final Matrix,  (order of calculation important) 

i) n = b n,n+l 

xn-l  " bn-l,n+l " blnxn 

n-2     n-2,n+l    In n   l,n-l n-1 

n+1 

sxs 
xi   = bi,nn - 51 bl, 

3,1 

The advantages of this method are that each step in the rules 



TR17C -c;?- 

r«:-quires only one machine operation and that a check column may 

hp readily carried along, as a check on eaoh row of the auxiliary 

rr.itrix.  A study of the number of machine operations shows that 

in forrinp the auxiliary matrix the t'  row requires t(n-t) oper- 

ations, r»nd the t  column requires (t-l)(n-t+l) ODerations where 
p 

n is the number of unknowns.  In addition there are n - n original 

entries in the machine. Hence the total number of machine operations 

in setting up the auxiliary matrix is 

JL 
n2 - n + ^> '   jt(n-t) + (t-l)(n-t+l)j 

= |(n2 + 3n - 5) 

In adc.ition there are n^nZ '    operations in the final matrix. 

Hence there a total of #(n +9n-l?) operations in the solution. 

Thus for ka = 2.0, the mode coefficients a, c f.»5 
l10' 

a,_c must be calculated. This means that there are 11 complex 

unknowns or equivalently 22 real unknowns requiring 4906 machine 

operations if no errors are made. Carrying a check column which 

is a necessity when there are so many variables requires another 

n(n+2) operations for a total of 5634- operations. 

The other method of solution is the Gauss-Seidel iteration 

procedure* based on a least-squares approximation to the true 

solution. The process can be shown to coverge in general. Con- 

sider the linear system 

allxl a12x2 + alnxn = Cl 

a21xl 

*nl*l 

a 22x2 + a2nxn    C2 

o a x  = C nn n    n 

"See Whittaker and Robinson. Calculus of Observations. Blackie 
and Sons, London, 4th edition, p. 255T" 

***&*&-^t 
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As a first guess at the solution try 

(0)  _ _£l (0) _ _^2 
1   " all ? 2       '  a22  ' 

then form 

N = a x(0) • a x(0) w1 lyp^      T a12x2 

and 
Ax (0) _ 

N, 
lll 415 

Similarly 

ri o    oi i     S^^^Q 

.(0) _ n 
n a. nn 

In n 
(0) 

= x<°> • Ax (0) 0 

a x(0> - C a2n n    °I 

Ax (0) _ 
L22 

and x^  = x2°> • Ax<°> 

and so onatill all values .(1) _(1) 
,  A2 

.(1) oxi '  have n .g v,^^.^. -^ »«*»v- X^  , x2  9 3C^ 

been calculated. Then repeat this process over to obtain 
.(2) _(2) 

9 x2 etc. As in every true iteration process, 
errors made in the calculations are automatically compensated for. 

The computation of x} (0)  (0) ,x2, '  requires n 
(1)       (1) divisions and the succeeding processes to obtain x} ', x), '. . «, 

, x2 

k& etc. require n+2 operations for a total of n|ze*0^*lher  solution 

operations in the first iteration.  If N iterations are carried 

through, the total number of operations is 

n + Nn(n+2) 

Thus for Ka = 2.0 it was found that 4 iterations were necessary 

to "educe the changes in the unknowns with further iteration to 

less than 1 percent.  Thus the total number of machine operations 

would be 2134. 

It is apparent then that at least 1 percent accuracy in the 

final solutions may be obtained by the iteration procedure with 

less than half the number of operations required by the exact 

method of solution described previously*  So the iterative method 
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alone has been used in the solution for Ka = 2.0 and 2.5 and 

both the iterative and Crout's method used for the solutions 

for Ka = 1.253. 

The following tables shows the value of the unknowns 

and 2b/\ = 1 after 1, 2, 3 and 4 iterations.  In addition the 

solutions by Crout's method for a-,2 •<-•->» a^Q 
al-2 

are given for comparison. The values of the unknowns have been 

rounded off to four figures in the tables although in practice 

as many figures were kept as the desk calculator would hold. A 

factor 4i x  0.0529918 has been removed from the right-hand side 

of the equations before solution. 
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